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Abstract

Two-dimensional channel flow of fluid laden with many particles is studied by direct numerical simula-
tion using the Navier–Stokes equation coupled with the equation of motion for respective particles. Frac-
tional four-step method with Crank–Nicolson scheme and ALE technique is adopted for P2P1 mixed finite
element formulation of the governing equations for fluid motion. The motion and distribution of particles
in the fluid is virtually described and the calculated relative viscosity is compared with previous results
within the limits of possibility. The effect of the ratio of channel gap to particle diameter on the relative
viscosity and the tubular pinch effect are also delineated.
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1. Introduction

The rheological behavior of concentrated suspensions which consist of Newtonian fluid or
polymer melt laden with many particles has been a subject of great interest for many decades.
The study of these suspensions is valuable for engineering applications such as coal-water slurries
transport, sediment transport, rheology of blood, and rheology of composite materials. Although
there have been many studies on rheological properties of such suspensions, there is still room for
further understanding about the concentration and distribution of particles in a suspension, and
the change of relative viscosity, because the flow characteristics of such suspensions are so
complex.

Some achievements in the study of fluid flow laden with small particles were made in the early
20th century. A very dilute suspension of small rigid spherical particles in a Newtonian fluid can
be assumed to be isotropic in structure and is characterized by an effective viscosity or relative
viscosity, as proposed first by Einstein (1906):
gr ¼
g
gf

¼ 1þ 2:5U; ð1Þ
where g, gr, gf, and U are the effective viscosity, the relative viscosity of the suspension, the viscos-
ity of the suspending medium fluid, and the volume fraction, respectively. This equation shows
that the effective viscosity is a function of the suspending medium fluid viscosity and the volume
fraction. The effective viscosity of a dilute suspension of rigid cylinders in a viscous fluid at small
particle Reynolds numbers was derived theoretically by Brady (1984) to be
gr ¼
g
gf

¼ 1þ 2:0U: ð2Þ
There is no effect of particle size, nor of particle position on the change of relative viscosity, be-
cause the above theories neglected the effect of all other particles.

These equations are valid only for very dilute suspensions say with volume fraction U < 0.02,
where even the Brownian motion of an isolated particle has no influence on the velocity and
stress of the fluid due to the presence of the particle itself in the bulk flow. Above this range
of volume fraction, hydrodynamic interactions play major roles in changing flow characteristics,
which include the interactions between the particles and the medium fluid, the interactions
among the particles themselves, and the stress transfer from the wall. When hydrodynamic inter-
actions come into play, so does the Brownian motion. These effects make their first appearances
in the expression for the mean stress when the terms of O(U2) are considered in the relative
viscosity equation.

Through a theoretical study, Batchelor (1977) proposed the relative viscosity representing the
bulk stress up to O(U2) in a statistically homogeneous suspension of spheres subjected to a simple
shear flow. The study showed that the theoretical value of 1.0 which equals the difference of coef-
ficients of U2 in the relative viscosity equation, should be regarded as the direct contribution due
to the Brownian motion. Therefore, the relative viscosities representing the suspensions with and
without the effect of the Brownian motion are described by the following equations, respectively:
gr ¼ 1þ 2:5Uþ 6:2U2; ð3Þ



gr ¼ 1þ 2:5Uþ 5:2U2: ð4Þ
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Dodd et al. (1995) obtained numerically the relative viscosity of a suspension of discs from self-
diffusivity and average stresslet in Stokes shear flow. Prosperetti (2004) obtained analytically the
relative viscosity of a quasi-random suspension of discs by calculating the ensemble-average veloc-
ity and pressure on the basis of the two-dimensional Stokes flow.

Kataoka et al. (1978) presented an expression for the effective viscosity of polymer melts filled
with particles, which was obtained by using a cone-and-plate viscometer:
gr ¼ 1� U
A

� ��2

; ð5Þ
where A is the packing geometry coefficient. Choi and Joseph (2001) used A = 0.8328 which scales
A into two dimension.

Some experimental studies made direct observations of the particle motion. Segre and Silber-
berg (1962a) examined radial displacements of the spherical rigid particles carried along in the
Poiseuille flow. They employed an optical scanning device which utilized two mutually perpendic-
ular light beams and allowed particles to pass through their intersection region. A statistical anal-
ysis of the counts of the passing particles enabled them to deduce the necessary data for
investigating single particle behavior. In their experiment, the particle diameters were 0.32–1.71
mm and the overall particle concentrations ranged from 0.33 to 4 particles/cm3. The suspensions
were too dilute for the particles to interact with each other. However, the radial displacements of
spherical particles in streaming suspensions were observed and the occurrence of a �tubular pinch
effect� were reported in the laminar flow of the suspension. It was also shown that a rigid sphere
transported along in the Poiseuille flow through a tube is subject to radial forces which tend to
carry it to a certain equilibrium radial position, irrespective of the initial radial position at which
the sphere first entered the tube.

Several theoretical and computational studies of inertial lift force on a particle and migration of
particles in the shear flow have been reported for the last decade. Cherukat and McLaughlin
(1994) studied the problem of inertial lift on a moving sphere in contact with a plane wall as a
perturbation of Stokes flow. Hogg (1994) investigated the inertial migration of non-neutrally
buoyant spherical particles, suspended in a fluid flowing between two plane boundaries. Asmolov
(1999) studied the inertial migration of small rigid sphere translating parallel to the walls within a
channel flow. Dandy and Dwyer (1990) and Cherukat et al. (1999) reported computational studies
of the inertial lift on a constrained sphere in linear shear flow using a finite volume formulation.
Kurose and Komori (1999) carried out numerical simulations to determine the drag and lift forces
on a rotating sphere in an unbounded linear shear flow.

Recently, with the advances of the computational techniques and the computing power, signif-
icant development has been made in directly solving the fluid–particle mixture problems of great
complexity. Hesla (1991) proposed the combined formulation of fluid–particle problem that com-
bines the fluid and particle equations of motion into a single coupled variational equation. This
combined formulation links the fluid traction on a particle with the motion of the particle
implicitly. Hu et al. (1992) developed a direct numerical simulation technique incorporating the
combined formulation with a finite element method based on an unstructured mesh for the
fluid–particle problem, and Hu (1996) carried out a direct simulation of flows of solid–liquid
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mixtures. This technique was utilized by Patankar et al. (2001) who studied the lift-off to equilib-
rium position of a single circular particle in Newtonian and viscoelastic fluids, which is driven for-
ward on the bottom of a channel by a plane Poiseuille flow. Feng and Michaelides (2003)
investigated the equilibrium position of a single circular particle in a horizontal shear flow by
LBM (lattice Boltzmann method). Choi and Joseph (2001) also studied the fluidization by lift
of 300 circular particles in a plane Poiseuille flow.

In the present paper, we adopt the same direct numerical simulation as Choi and Joseph (2001)
to examine the fluid flow laden with many particles that are large enough to neglect the Brownian
motion in a two-dimensional channel. The changes of the rheological properties of the suspension
caused by the interactions between the fluid and particles are considered. The effect of the ratio of
channel gap to particle diameter and the distribution of particles in terms of the gapwise position
are also discussed.
2. Governing equations

We consider a two-dimensional channel flow in which the fluid is laden with many particles, as
schematically shown in Fig. 1. The suspension consists of a Newtonian medium fluid and non-
deformable particles which have the same density as the fluid and are depicted as two-dimensional
cylinders. Motivations for studying the two-dimensional case of a suspension of aligned cylinders
are lucidly stated in a very recent study of Prosperetti (2004) who calculated the ensemble-average
velocity and pressure in a periodic suspension of cylinders and from these results evaluated the
particle stress on the assumption of Stokes� flow.

The governing equations for unsteady, laminar, incompressible flow are the conservation of
mass and the conservation of momentum:
r � u ¼ 0; ð6Þ
Du

qf Dt

¼ qf f þr � ~r; ð7Þ
where u, qf, and f are the velocity vector, fluid density, and body force per unit mass, respectively.
The stress tensor is given by
Fig. 1. A schematic of computational domain and flow condition.
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~r ¼ �p~Iþ ~s ¼ �p~Iþ gf ½ruþ ðruÞT�; ð8Þ
where ~I and ~s are the identity tensor and the shear stress tensor, respectively. To describe the
movement of the particles, Arbitrary Lagrangian–Eulerian (ALE) technique is used so that the
Navier–Stokes equation is modified as follows:
qf
ou

ot
þ ½ðu� ugÞ � r�u

� �
¼ qf f þr � ~r; ð9Þ
where ug is the grid velocity vector which is obtained by solving the Laplace equation to guarantee
its smooth variation, as adopted by Hu et al. (1992). The weak formulations of the Navier–Stokes
equation and continuity equation are
Z
X

W � qf
ou

ot
þ ½ðu� ugÞ � r�u

� �
þrW : ~r

� �
dX�

I
C

W � ~r � ndC ¼ 0; ð10Þ
Z

X
qr � udX ¼ 0; ð11Þ
where W and q are the weighting functions for the momentum and continuity equations, respec-
tively; X and C are the fluid domain and boundary of the fluid domain, respectively. The weight-
ing functions can be written as follows:
W ¼ wiðaiex þ bieyÞ;
q ¼ kimi;
where the subscript �i� denotes the ith node; wi and mi denote the shape functions of velocity and
pressure variables, respectively; ai, bi and ki are arbitrary constants; ex and ey are the base vectors
of the two-dimensional space.

The particle motion is determined by the hydrodynamic forces and described by Newton�s law
as follows:
Mn
dVn

dt
¼ Fn ¼ �

I
Cn

~r � ndC; ð12Þ
for n = 1, 2, . . . , N, where Mn, Vn, Fn, Cn, n, and N are mass of the nth solid particle, translational
velocity vector, hydrodynamic forces, nth particle surface, outward unit normal vector to the par-
ticle surface, and number of particles, respectively.

The Euler equation for the angular momentum is
d

dt
ðIn-nÞ ¼ Tn ¼ �

I
Cn

ðx� XnÞ � ð~r � nÞdC; ð13Þ
where In, -n, Tn, x, and Xn are the moment of inertia and angular velocity of the nth solid particle,
torque acting on the particle, position vector to a point in the fluid domain, position vector to the
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centroid of the nth particle, respectively. The centroid position, Xn and the orientation Hn of the
particle lead to the following relations:
dXn

dt
¼ Vn;

dHn

dt
¼ -n:
Using the fact that the sum of every velocity shape function is equal to 1, the hydrodynamic forces
Fn in Eq. (12) can be written as follows:
Fn ¼ �
X
i2Cn

I
Cn

wið~r � nÞdC; ð14Þ
where wi denotes the shape function (of the weighting function for the momentum equations) at
the ith node point along the nth particle surface Cn. Therefore, relating Eq. (10) with Eq. (14), we
can obtain the following formulation of the hydrodynamic force:
Fn ¼ �
X
i2Cn

Z
X

wiqf
ou

ot
þ ½ðu� ugÞ � r�u

� �
þrwi � ~r

� �
dX: ð15Þ
Thus, from Eq. (12) we can obtain the following combined formulation for the equations of
motion of each particle:
Mn
dVn

dt
¼ �

X
i2Cn

Z
X

wiqf
ou

ot
þ ½ðu� ugÞ � r�u

� �
þrwi � ~r

� �
dX: ð16Þ
These are combined with the equation of fluid motion in a fluid–particle system, so that both the
fluid and the particle equations of motion are incorporated implicitly into a single coupled equa-
tion. A similar procedure is applied to obtain a combined formulation for the angular momentum
equation:
d

dt
ðIn-nÞ ¼ �

X
i2Cn

Z
X
ðx� XnÞ � wiqf

ou

ot
þ ½ðu� ugÞ � r�u

� �
þrwi � ~r

� �
dX: ð17Þ
Finally, the following kinematic constraint should be imposed on each particle surface in order
to guarantee the no-slip condition:
u ¼ Vn þ -n � ðx� XnÞ: ð18Þ

Combining Eqs. (10), (11), (12), (17) and (18), and assembling all the elemental matrices, the

global matrix is obtained:
A B C

ðBÞT 0 0

D E F

2
64

3
75

U

P

V

2
64

3
75 ¼

f

0

g

2
64

3
75: ð19Þ
where A, B, C, D, E and F are sparse matrices; U, P and V represent the vectors of the veloc-
ities, pressures, and the vectors combining all the translational velocity components (Un, Vn) and
the angular velocities (-n) of the solid particles; f and g include the external force terms in the
fluid and solid momentum equations. For two-dimensional flow problems, the dimension of the
vector U is twice the number of nodes in the mesh, the dimension of the vector P is the number
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of vertices in the mesh, and the dimension of the vector V is three times the number of rigid
particles.

A fractional four-step method of Choi et al. (1997) with the second-order-accurate fully-implicit
Crank–Nicolson time-marching scheme is used to discretize Eqs. (10) and (11) with P2P1 mixed
finite element method. The ALE technique is adjusted to be applicable to body-fitted, unstruc-
tured, finite element mesh. For further details of these numerical methods, reference should be
made to Choi (2000).
3. Results and discussions

We now investigate the two-dimensional flow of a suspension laden with many rigid cylindrical
particles in a plane channel as shown in Fig. 1, where the medium fluid is Newtonian and the par-
ticles are freely dispersed in the fluid since the density of the particle is the same as that of the fluid.

The Reynolds number depends on the wall shear rate, so that it is expressed as
Re ¼ qf _cwd
2=gf ; ð20Þ
where _cw and d are the shear rate at the wall in the absence of the particles and particle diameter,
respectively. Unless otherwise specified, the Reynolds number, Re = 10 is held fixed for all simu-
lation cases, regardless of the channel gap considered in the present study. The pressure gradient
in the channel is given as a function of the Reynolds number:
DP
Dx

¼ Re �
2gf
G

� m
d2

¼ Re �
2gf
G

�
gf
d2qf

¼ Re �
2g2f

qfGd
2
: ð21Þ
where m is the dynamic viscosity.
The computational domain is a two-dimensional plane channel with a periodic boundary,

where the ratio of channel gap to channel length (G/L) is about 10:63. Three different cases of
the ratio of channel gap to particle diameter (G/d) are to be considered, that is, G/d = 5, 10,
and 40. In the channel for G/d = 10, the ratio of channel length to particle diameter (L/d) is
63, so that the size of the calculation domain is 10d · 63d. This is similar to that of Choi and
Joseph (2001), who used 12d · 63d, which was conceived to be long enough to cover the four
or more of the waves of pressure pattern of the fluid motion. The volume fraction of the suspen-
sion is varied from 0.05 to 0.4 in the present study. Table 1 shows the input data for the present
simulation of fluid flow laden with many particles and, as an example, the computational mesh for
the case of G/d = 5 and U = 0.05 is shown in Fig. 2, where the particles are initially suspended at
random positions. When the pressure gradient is applied in the channel, the particles will move by
hydrodynamic forces.

In order to find out the effective viscosity of the suspension, the velocity profile has to be
known. However, unlike parabolic velocity profile of the purely Newtonian fluid, the velocity pro-
file of the fluid laden with many particles cannot be known a priori because the effective viscosity
changes when particles are fluidized in the fluid. Therefore, we are to calculate averaged velocities
along the distance from the wall. Then the fluid laden with particles is to have a velocity profile
slower than that of the corresponding Newtonian fluid because the existence of particles affect the
stress field of the fluid in the sense that the velocity decreases as the volume fraction increases.



Table 1
Input data for the simulation of fluid flow laden with many particles

Gap/diameter G/d Length/diameter L/d Volume fraction U Number of particles N Reynolds number Re

5 63 0.05 20 10
5 63 0.10 40 10
5 63 0.20 80 10
5 63 0.30 120 10
5 63 0.40 160 10

10 63 0.05 40 10
10 63 0.10 80 0.1
10 63 0.10 80 1
10 63 0.10 80 5
10 63 0.10 80 10
10 63 0.20 160 10
10 63 0.30 240 10
10 63 0.40 320 10

40 252 0.05 640 10
40 252 0.10 1280 10
40 252 0.20 2560 10
40 252 0.30 3840 10
40 252 0.40 5120 10

Fig. 2. Computational mesh when the fluid domain contains 10 particles (G/d = 5, U = 0.05).
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To validate the code, grid sensitivity test was performed by increasing the number of nodes dis-
posed on a particle surface up to 30 at G/d = 10, U = 0.1, and Re = 10. Fig. 3 shows averaged
velocity distributions across the channel gap for various numbers of nodes on a particle surface.
When the number is 6, the calculation did not reach convergence. With 10 nodes it reached con-
vergence but there is some discrepancy between the results with 10 and 15 nodes on a particle sur-
face. However, there is negligible difference between the results with 15 and 30 nodes. Thus, it can
be said that 15 nodes on a particle surface is acceptable for the present problem.

A particle migrates in such a manner that its streamwise velocity component is much greater
than its gapwise velocity component. Therefore, it takes much time for each particle to reach
its equilibrium gapwise position, so that sufficient computation time is required for attaining
the equilibrium state of the flow field. Fig. 4 shows the variation of particle distribution with time
at G/d = 10, U = 0.2 and Re = 10. The particle distribution is represented by Ns/N, where N is the
total number of particles in the channel and Ns is the number of particles in a section which is a
gapwise interval defined by dividing the channel gap by 10. Initially, the particles are distributed
randomly or rather uniformly across the channel. As time goes on, the gapwise distribution of
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particles exhibits the pinch effect with little change. Therefore, it can be said that the particle dis-
tribution of the present simulation has reached an equilibrium state. Although not shown here to
save space, similar results were obtained for the case of a smaller Re than that in Fig. 4 when suf-
ficient computation time was taken together with grid convergence test.

As another code validation, the lift-off force of a single particle in a Newtonian fluid is studied.
The simulation condition of this problem, G/d = 12, L/d = 22, and Re = 6.67, is the same as that
of Patankar et al. (2001). It turns out that the migration height at which the buoyant weight bal-
ances the hydrodynamic lift is 0.78 at Re = 6.67, which is exactly the same as Patankar et al.
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The particle positions and pressure distribution at G/d = 10, U = 0.4, and Re = 10 are shown in
Fig. 5 for the fully developed flow condition. The flow field looks complicated with dispersed par-
ticles and we cannot notice any distinctive flow patterns yet.

Now, we calculate gr (the relative viscosity of the suspension) in the sections designated accord-
ing to the distance from the wall by the following procedure. First, hundreds of streamwise veloc-
ity u are extracted across each section using TECPLOT at fully developed equilibrium state. Then,
we obtain the representative velocity of each section by averaging these velocities. Knowing that
the stress distribution is linear in the gapwise direction at fully developed flow condition, we are
now able to obtain the effective viscosity for each section from the well-known relation between
the shear stress and the velocity gradient:
Fig. 5
(G/d =
distur
sðyÞ ¼ gðyÞdu
dy

; gðyÞ ¼ sðyÞDy
Du

:

Finally, the relative viscosity of the suspension is found by averaging these viscosities.
Fig. 6 shows the variation of the relative viscosity with volume fraction at G/d = 40 and

Re = 10, in comparison with some previous works. The error bars on the data obtained by the
present simulation represent the highest and lowest effective viscosities at different sections across
the channel. It may not be appropriate to make direct comparisons with previous works because
most of them are for different flows of different fluids under different conditions from the present
study (as discussed earlier in the Introduction) which considers pressure-driven flows in two-
dimensional channels on the basis of the Navier–Stokes equations. Prosperetti�s (2004) result
shows largest deviation from the present study which may be due to the assumption of a
quasi-random suspension of discs subjected to two-dimensional Stokes flow. Kataoka et al.�s
(1978) result scaled into two dimension may reflect the effect of simple shear flow of particle-laden
shear-thinning polymer melt. Batchelor�s (1977) result is for uniform suspension of spherical par-
ticles, where Brownian motion plays an important role. However, it should be noted that unlike
the above studies particle–particle and particle–wall interactions are intrinsically included in the
present DNS of flow of fluid–particle mixture, so that the resistance of the suspension to flow
can be most realistically represented.
. Snapshot of the motion of particles and the pressure distribution when the fluid domain contains 320 particles
10, U = 0.4). The constant pressure gradient times the distance is subtracted from the pressure to represent the

bance due to the movement of particles.
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We now consider the effect of particle size on the fluid flow for various volume fractions by
comparing the three cases, G/d = 5, 10, 40, at a fixed Reynolds number, Re = 10, as shown in
Fig. 7. As the ratio of channel gap to particle diameter increases for the same volume fraction,
the relative viscosity of the suspension decreases. This effect becomes more pronounced as the vol-
ume fraction of the fluid increases. At this point, it is noteworthy that the �local� effective viscosity
near the channel wall will be reduced when the particle size becomes larger since the lubrication
layer (clear fluid) next to the channel wall will be proportional to the particle size. However, as the
particle density reduces in the lubrication layer (as will be shown later in Fig. 10), it increases
in the center region generating a stronger particle–particle interaction there. This causes a flat
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velocity profile like that of Bingham channel flow, thus explaining the steep velocity gradient with
a reduced �local� effective viscosity near the channel wall and the mild velocity gradient with an
increased local effective viscosity in the center region. Since the clear fluid occupies only a thin
lubrication layer next to the channel wall, the relative viscosity of the suspension is higher for
a larger particle size although the �local� effective viscosity is reduced in the lubrication layer.

In Fig. 8, the velocity profiles of the suspension for various volume fractions at G/d = 10 and
Re = 10 are shown. The velocity distributions in this figure have been obtained by averaging the
instantaneous values under the fully developed flow condition. Uc is the centerline velocity of
the standard Newtonian fluid with the same viscosity as the medium fluid but without particles
for the applied pressure gradient under the fully developed flow condition. The velocity decreases
as the volume fraction increases and the velocity profile of high volume fraction fluid is flatter
than that of low volume fraction fluid at the center of the channel.

Apparently, the particles do not exhibit a uniform distribution in the fluid (i.e., parabolic veloc-
ity profile of the suspension) because the distribution of particles is affected by the flow of the
medium fluid and vice versa. It is noteworthy that the particles under the Poiseuille flow condition
are driven by the lift force, as reported by Patankar et al. (2001), acting in the radial direction
from the wall to the center so that the particles are suspended at a distance off the wall. This radial
displacement is due to the force caused by the shear stress distribution in the fluid. Segre and Sil-
berberg�s (1962b) experimental observation reported this phenomenon as the tubular pinch effect
occurring in the laminar flow of suspensions of spherical particles through a circular tube. They
argued that the particles are subject to radial displacements, outwards from the center of the tube
and inwards from the wall. There existed an equilibrium radial position at about 0.6 times the ra-
dius from the axis around which the particles tend to cluster. In the present study, the number of
the particles is much more than that of their experiment so that more frequent interactions among
the particles occur, not considering the difference between a circular tube and a plane channel.

In Fig. 9, the velocity distributions of the suspension at U = 0.4, whose relative viscosity is
gr = 2.78 (quoted for G/d = 10 from Fig. 7), are compared with that of the medium fluid without
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Fig. 8. Velocity profiles of the suspension with respect to the gapwise position for various volume fractions at G/d = 10
and Re = 10.
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particles having the same effective viscosity. The velocity of the suspension is slower than that of
the fluid having the same effective viscosity without particles at the center while it is faster at the
near-wall region, which shows the effect of the particles on the fluid motion.

In Fig. 10, the distributions of the particles in the channel with respect to the gapwise posi-
tion for the suspension at U = 0.4 and Re = 10 are shown for G/d = 5, 10 and 40. For G/d = 5
and 10, the particles are very sparsely distributed near the wall while they are aggregated den-
sely in the center, giving the same results as Gavin (1997) who showed that the lift force could
give rise to a reduced volume fraction adjacent to the duct wall in the laminar Poiseuille flow of
ER and MR materials. He suggested that this locally diminished volume fraction reduces yield
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Fig. 10. Distribution of the particles along the gapwise direction for G/d = 5, 10 and 40 at U = 0.4 and Re = 10.
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stress near the duct boundaries, which can explain the observed reduction in dynamic yield
stress as compared to static yield stress. However, at G/d = 40, the particles are almost uni-
formly distributed. This is because the wall effect is not so significant when the ratio of channel
gap to particle diameter is large, resulting in small lift force from the wall even for a large
volume fraction.

The non-uniform distribution of particles causes the non-uniform distribution of effective vis-
cosity, which has an effect on the velocity profile in the flow. The reduced volume fraction adja-
cent to the wall reduces the effective viscosity, and the increased volume fraction at the center
region makes the velocity profile there to be rather flat than parabolic. In Fig. 11, the numbers
of particles in the sections throughout the channel gap for various volume fractions are shown.
For the fluid of volume fraction U = 0.4, the number of particles increases as the distance from
the wall increases. However, for the cases of rather sparsely distributed fluid of volume fraction
U = 0.05, and U = 0.1, the location at which particles are gathered close together is not at the cen-
ter but shifted somewhat towards the wall. This distribution is corresponding to the tubular pinch
effect reported by Segre and Silberberg (1962b). This result shows that the present DNS method
can simulate the motion of particles to the minutest details efficiently.

In Fig. 12, snapshots of suspended particles and pressure distributions at the initial state and at
the fully developed state for the fluid of volume fraction U = 0.1 are shown. We can observe that
the particles, which are placed at random positions initially, are aligned in two rows at a certain
distance from the wall at the fully developed state. These snapshots are a manifestation of tubular
pinch effect of the suspension.

The distribution of the particles is also affected by the Reynolds number. In Fig. 13, the distri-
butions of the particles at U = 0.1 with respect to the gapwise position at various Reynolds num-
bers are shown. At Re = 5, the distribution of the particles is similar to that at Re = 10. However,
as the Reynolds number decreases, the distribution of the particles in the center region increases
so that the tubular pinch effect decreases. This occurs because the forces that contribute to the
radial displacement of particles are reduced as the Reynolds number decreases.
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Fig. 11. Distribution of particles along the gapwise direction for various volume fractions at G/d = 10 and Re = 10.



Fig. 12. Snapshots of the motion of particles and the pressure distribution at the initial state and at the fully developed
state at G/d = 10, U = 0.05, and Re = 10.
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Fig. 13. Distribution of particles along the gapwise direction for various Reynolds numbers at G/d = 10 and U = 0.1.
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4. Conclusions

Two-dimensional channel flow of fluid laden with many particles is studied by direct numerical
simulation using the Navier–Stokes equation for the fluid, coupled with Newton�s law of motion
for the particles.

The velocity profile and the distribution of the particles in the channel are shown for the fully
developed flow condition. As the volume fraction increases at a fixed ratio of channel gap to par-
ticle diameter, the fluid velocity decreases, and the effective viscosity of suspension increases.
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By comparing the relative viscosity of suspension directly calculated from the velocity distribu-
tion with previous results, it is discussed that the present simulation can realistically represent the
resistance of the particle–laden fluid to flow. As the ratio of channel gap to particle diameter in-
creases at a fixed volume fraction, the relative viscosity decreases.

The particles in the channel are displaced in the gapwise direction, inwards from the wall
and outwards from the center. This tubular pinch effect observed in the previous experiment
is substantiated by the present direct numerical simulation. The tubular pinch effect is en-
hanced as the Reynolds number increases, but it decreases when the volume fraction increases.
The present DNS proves to be a useful tool for describing the fluid flow affected by particle
interactions.
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